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ABSTRACT
We describe a programming model called PTIDES (Pro-
gramming Temporally Integrated Distributed Embedded Sys-
tems), that extends the discrete-event model of computation
with a carefully chosen relationship between real time and
model time. PTIDES provides a framework for exploring
a family of execution strategies for distributed embedded
systems. Our objective in this paper is to present an ex-
ecution strategy that 1) allows independent events to be
processed out of time stamp order, 2) uses clock synchro-
nization as a replacement for null message communication
across distributed platforms, 3) defines a notion of when
events are safe to process and 4) presents an implementa-
tion of a PTIDES model. This work puts forward an exe-
cution strategy that is aggressive in concurrent execution of
events.

1. INTRODUCTION
Current programming practices for distributed real-time em-
bedded systems often employ commercial-off-the-shelf real-
time operating systems (RTOSs) and real-time object re-
quest brokers as utilities for implementing the system. Pro-
grammers also use languages such as C with concurrency
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expressed by threads. RTOSs and threads, however, pro-
vide only weak guarantees that the system will meet real-
time constraints. Nor do they guarantee that the behav-
ior of the system is deterministic. A consequence is that
the only way to achieve confidence in the implementation is
through extensive testing. Such testing validates that the
functionality and real-time requirements of the system are
met for the tested scenarios. However this technique is in-
herently flawed, because no assurance can be given about
the behavior of the entire system. We identify the source of
problem for such techniques as the lack of a timed semantic
foundation combined with the inherent nondeterminism in
threads [10].

These problems can be addressed by using a distributed
discrete-event (DE) model of computation (MoC). Though
normally used for simulation (of hardware, networks, and
systems of systems, for example), by carefully binding real
time with model time at sensors, actuators, and network
interfaces, DE can be used for distributed embedded sys-
tems [22]. The advantage of using DE as a semantic foun-
dation is that it is simple, time-aware, deterministic, and
natural as a specification language for many applications.

In the DE MoC, components send time-stamped events to
one another [21]. The time stamps may be integers (as is
typical with hardware description languages such as Verilog
and VHDL), floating point numbers (as is typical in network
simulators), or members of any totally ordered set.

Distributed DE simulation is an old topic [6]. The focus has
been on accelerating simulation by exploiting parallel com-
puting resources. A brute-force technique for distributed DE
execution uses a single global event queue that sorts events
by time stamp. This technique, however, is only suitable for
extremely coarse grained computations, and it provides a
vulnerable single point of failure. For these reasons, the com-
munity has developed distributed schedulers that can react
to time-stamped events concurrently. So-called “conserva-
tive” techniques process time-stamped events only when it is
known to be safe to do so [3, 19]. It is safe to process a time-
stamped event if we can be sure that at no time later in the
execution will an event with an earlier time stamp appear
that should have been processed first. So-called “optimistic”
techniques [8] speculatively process events even when there
is no such assurance, and roll back if necessary.



For distributed embedded systems, the potential for roll
back is limited by actuators (which cannot be rolled back
once they have had an effect on the physical world) [5]. Es-
tablished conservative techniques, however, also prove inad-
equate. In the classic Chandy and Misra technique [3, 19],
each compute platform in a distributed simulator sends mes-
sages even when there are no events to convey in order to
provide lower bounds on the time stamps of future messages.
This technique carries an unacceptably high price in our con-
text. In particular, messages need to be frequent enough to
prevent violating real-time constraints due to waiting for
such messages. Messages that only carry time stamp in-
formation and no data are called “null messages.” These
messages increase networking overhead and also reduce the
available precision of real-time constraints. Moreover, the
technique is not robust; failure of single component results
in no more such messages, thus blocking progress in other
components. Our work is related to several efforts to reduce
the number of null messages, such as [20], but makes much
heavier use of static analysis.

The key idea of Zhao, Liu and Lee in [22] is to leverage static
analysis of DE models to achieve distributed DE scheduling
that is conservative but does not require null messages. The
static analysis enables independent events to be processed
out of time stamp order. For events where there are depen-
dencies, the technique goes a step further by requiring clocks
on the distributed computational platforms to be synchro-
nized with bounded error. In this case, the mere passage of
time obviates the need for null messages.

This paper reviews the PTIDES programming model (pro-
nounced “tides,” where the “P” is silent, as in “Ptolemy”), an
acronym for programming temporally integrated distributed
embedded systems. PTIDES brings forth the advantages
that it 1) builds on top of a strong timed semantic foun-
dation, 2) provides a mathematical framework for present-
ing strategies that explore concurrency of implementations,
3) allows deterministic schedulability analysis, and 4) eases
specification of real-time constraints. In reviewing PTIDES,
we revisit the static analysis techniques of [22] and define a
family of execution strategies based on it. However, our
focus here is to present an execution strategy that assumes
that platforms have clocks for synchronization and attempts
to aggressively process events on the computing platforms.
We also establish a relationship between model time and real
time at sensors, actuators and network interfaces. These re-
lationships, clock synchronization protocols and the static
analysis are used to: 1) allow independent events to be
processed out of time stamp order, 2) replace the need to
send null messages across distributed computing platforms
as done in [19], 3) determine when events are safe to process,
and 4) present a sketch for an implementation of a PTIDES
model. These are our main contribution in this paper.

2. MODEL TIME AND REAL TIME
We specify DE models using the actor-oriented [11] approach.
In this case, actors are concurrent components that exchange
time-stamped events via input and output ports. The input
ports receive time-stamped messages from other actors, and
the output ports send time-stamped messages to other ac-
tors. Actors react to input messages by“firing,” by which we
mean performing a finite computation and possibly sending

output messages. An actor may also send a time-stamped
message to itself, effectively requesting a future firing.

The“time” in time stamps is model time, not wall clock time,
which is also referred to as real time or physical time in this
paper. DE semantics is agnostic about when in real time
time-stamped events are processed. All that matters is that
each actor process input events in time-stamp order. That
is, if it fires in response to an input event with time stamp
τ , it should not later fire in response to an input event with
time stamp less than τ .

The semantics of DE models is studied in [12, 17, 16, 14].
In particular, the structure of model time is important for
dealing correctly with simultaneous events and feedback sys-
tems. For the purposes of this paper, we only care that there
are policies for dealing predictably with multiple events with
identical time stamps. To be concrete, we will assume that
time stamps are elements of the set R+ ∪ {∞}. In full gen-
erality, however, our techniques work for any set of time
stamps that is totally ordered, has a top and a bottom, and
has a closed addition operator.

Since we are focused on distributed embedded systems rather
than distributed simulation, some of the actors are wrappers
for sensors and actuators. Sensors and actuators interact
with the physical world, and we can assume that in the
physical world, there is also a notion of time. To distinguish
it from model time, we refer to real time. Real time has its
own subtleties, of course, even without getting into relativis-
tic effects or quantum entanglement. In a classical Newto-
nian notion of time, we can imagine an oracle that oversees
the execution of a distributed system and maintains a single
coherent global notion of real time. With such a notion, we
can talk about components in the system performing actions
“simultaneously.” However, such an oracle remains fictional.
In a distributed system, there is no (known) mechanism by
which all components can precisely coordinate their notions
of real time.

For the purposes of this paper, we assume a classical New-
tonian notion of physical time, and assume that each com-
pute platform in a distributed system maintains a clock that
measures the passage of physical time. These clocks are not
perfect, so each platform has a distinct local notion of phys-
ical time. We assume further than were there a Newtonian
oracle that could simultaneously compare the notions of real
time on the distinct platforms, that we could find a bound
on the discrepancies between clocks. That is, at any global
instant, any two clocks in the system agree on the notion of
real time up to some bounded error.

Such synchronized clocks turn out to be quite practical [9].
We have had available for some time generic clock synchro-
nization protocols like NTP [18]. Recently, however, tech-
niques have been developed that deliver astonishing preci-
sion, such as IEEE 1588 [7]. Hardware interfaces for Eth-
ernet have recently become available that advertise a pre-
cision of 8ns over a local area network. Such precise clock
synchronization offers truly game-changing opportunities for
distributed embedded software.

We assume that model time and real time are disjoint, but



that they can be compared. That is, we assume that model
time is in fact a representation of real time, even though
time-stamped events can occur at arbitrary physical times.
In our DE models, an actor that wraps a sensor, however,
cannot produce time-stamped events at arbitrary times. In
particular, it will produce a time-stamped output only after
physical time (the local notion of physical time) equals or
exceeds the value of the time stamp. That is, the time stamp
represents the physical time at which the sensor reading is
taken, and hence it cannot appear at a physical time earlier
than the value of the time stamp.

An actor that wraps an actuator has a complementary con-
straint. A time-stamped input to such an actor will be inter-
preted as a command to produce a physical effect at (local)
physical time equal to the time stamp. Consequently, the
model-time time stamp is a physical-time deadline for deliv-
ery of an event to an actuator.

We will also impose timing constraints at network interfaces.
A network connection carries time-stamped events from one
compute platform to another. We will abstract such an in-
terface as an actor with one input port and one output port.
Events presented at the input port will appear unchanged
at the output port (in particular, they will have the same
time stamp). Similar to actuators, however, we will require
that an event with time stamp τ be delivered to the input of
the network interface before real time exceeds τ . Moreover,
we will assume a bounded network delay, so that the real
time that elapses between delivery of such an event to the
network interface and appearance of the event at the output
of the network interface is bounded. Taken together, these
constraints guarantee an upper bound, relative to the time
stamp, on the real time at which a time-stamped event is
delivered by the network to its destination. A bounded net-
work delay is realizable in real-time networks such as TTA
or FlexRay, or by over-provisioning in other networks.

At actors that are neither sensors or actuators, there is no
relationship between real and model time. At these actors,
input events must be processed in model-time order, but
such processing can occur at any real time (earlier or later
than the time stamp).

3. THE PTIDES EXECUTION STRATEGY
We leverage static dependency information between actors
to develop an execution strategy for discrete-event models.
This strategy is general in the sense that it allows for dif-
ferent implementations targeting a variety of computer ar-
chitectures. An implementation and a time-synchronized
architecture are discussed in the next section making use of
this strategy.

3.1 Model Structure and Events
We assume a port to be either an input port or an output
port. This is without loss of generality, because a port that
is an input port and an output port at the same time can be
considered as two distinct ports. We further assume ports
to be interconnected by a fixed and static network, where
each input port is connected to at most one output port. For
communication networks that are allowed to change dynami-
cally, it is possible to recompute the dependency information

i
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Figure 2: A source actor triggered by an initial event

for the changed parts on the fly, which is beyond the scope
of this paper.

Our execution strategy for distributed discrete-event sys-
tems can be viewed as a generalization of prior work in this
field. Specifically, it relaxes an assumption made by Chandy
and Misra in [3] and [19]. We do not require that events sent
and received on any connection be ordered by time stamps.
Hence, we allow an input port to receive events in arbitrary
order.

A further generalization that we make is to allow zero or
more initial events to be provided to each input port at the
start of an execution. They can be generated in the ini-
tialization phase of the execution. Their time stamps are
unrestricted. Actors process initial events and other events
generated during the execution in time stamp order. A spe-
cial use of initial events is seen at source actors, which spon-
taneously output events whose time stamps have no relation-
ship to real time. In the literature, a source actor usually
has no input port but one output port. We instead consider
it as an actor with one input port that acquires an initial
event e0 with time stamp 0, as shown in Figure 2. The ini-
tial event effectively triggers the first output to both of the
source actor’s output ports. (The dashed lines in the figure
denote dependencies, which we will define next.)

The core of our execution strategy is a way to decide whether
it is safe to process an input event. An event is safe to process
if no other input event for the same actor with a smaller
time stamp can affect an output signal that is affected by
that event.

3.2 Dependencies
We represent the input-output dependency between ports
with minimum model-time delay, which is computed stati-
cally. It is formulated as a causality interface [15] using min-
plus algebra [1]. It constitutes an interface definition [4] for
the actors.

A model in our formal representation consists of a set of
actors, represented by A. Any actor α ∈ A has a set of
input ports Iα and a set of output ports Oα. The set of all
input ports is I =

⋃
α∈A Iα. The set of all output ports is

O =
⋃
α∈AOα. The set of all ports is P = I ∪O.

We require a function δ0 : P×P → R+∪{∞} to be provided
a priori, where R+ is the set of non-negative real numbers.
By requiring the return values be non-negative, we explicitly
assume the actors we are dealing with to be causal, in the
sense that their output events are no earlier in model time
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Figure 1: Example with minimum model-time delay, relevant dependency and dependency cut

than the input events that cause them. [13]

δ0 is defined as follows.

1. If p1 is an output port, p2 is an input port, and p1 is
connected to p2, then δ0(p1, p2) = 0.

2. If p1 ∈ Iα and p2 ∈ Oα for some α ∈ A, then δ0(p1, p2)
is provided by the designer of actor α to character-
ize the dependency between input port p1 and output
port p2. Alternatively, it may be inferred from a hier-
archical definition of α using the methods of [15]. In
either case, if δ0(p1, p2) = τ0 (where τ0 ∈ R+), the
actor guarantees that an input event at p1 with time
stamp τ has no effect on any event(s) at p2 with time
stamp less than τ + τ0.

3. For all other ports p1 and p2, δ0(p1, p2) =∞.

For example, for a Delay actor with input port p1, output
port p2 and a constant model-time delay τD between them
(τD ≥ 0), δ0(p1, p2) = τD. For a VariableDelay actor, whose
delay can be changed at run-time but is always non-negative,
δ0(p1, p2) = 0. If the events at an input port p1 never affect
those at an output port p2, then δ0(p1, p2) =∞.

Some actors have internal state that is affected by input
events. We assume the state s of actor α is modeled by
an output port os ∈ Oα. Most commonly, for any input
port i ∈ Iα, we will have δ0(i, os) = 0, indicating that the
state is immediately affected by the input. For some actors,
δ0(i, os) may be infinite, indicating that events at i have no
effect on the state. It may also be a positive real number τs,
indicating that the effect on the state of an input with time
stamp τ is not observable at outputs with time stamp less
than τ + τs. By modeling state as special output ports, our
results developed for non-stateful actors are trivially appli-
cable to stateful actors as well.

We will use the model in Figure 1 as a running example to
clarify the definitions in this section. In that figure, rectan-
gles represent actors and filled triangles pointing into actors
represent input ports of those actors. Output ports are de-
noted with outgoing arrows. The input ports are labeled i1
through i9 and the output ports are labeled o1 through o8.

A dashed line in an actor represents predefined non-infinity
dependency between the connected input port and output
port. (The concrete value is omitted to reduce clutter.) For
example, the dashed line between i1 and o1 in actor A im-
plies that δ0(i1, o1) is statically known to be a number in
R+.

A path from port p1 to pn is a sequence of ports [p1, p2, · · · , pn]
for some n > 0. A subpath is a sequence of consecutive ports
in a path. (It is also called a substring in the literature.)
In Figure 1, [i1, o1, i5, o5, i8, o7] is a path, and [i5, o5, i8] is a
subpath.

We define δP (ρ) for path ρ = [p1, p2, · · · , pn] as the model-
time delay on the path as follows. If n = 1, then δP (ρ) = 0.
Otherwise,

δP (ρ) =

n−1∑
k=1

δ0(pk, pk+1).

To continue with the previous example in Figure 1,
δP ([i1, o1, i5, o5, i8, o7]) = δ0(i1, o1) + δ0(i5, o5) + δ0(i8, o7),
where we observe that δ0(o1, i5) = δ(o5, i8) = 0.

Now we are ready to define the minimum model-time delay
for arbitrary pairs of ports with function δ : P × P → R+ ∪
{∞}. For any px, py ∈ P , δ(px, py) is defined as follows,

δ(px, py) = min
{
δP (ρ) | ρ is a path from px to py

}
That is, δ(px, py) is the smallest model-time delay on any
path from px to py. In Figure 1, there are only two paths
from i1 to o7 that may not yield∞, so the minimum model-
time delay from i1 to o7 is:

δ(i1, o7) = min
{
δP ([i1, o1, i5, o5, i8, o7]),

δP ([i1, o1, i6, o6, i9, o7])
}

= min
{
δ0(i1, o1) + δ0(i5, o5) + δ0(i8, o7),

δ0(i1, o1) + δ0(i6, o6) + δ0(i9, o7)
}

The minimum model-time delay function δ can be computed
in a static analysis before execution. This reduces the work-
load of the run-time DE scheduler.

3.3 General Execution Strategy
In this section, we discuss our execution strategy for dis-
tributed discrete-event systems. It is general enough to serve



as the basis of a variety of concrete implementations of exe-
cution policies. For the ease of this discussion, we make an
additional assumptions that, conceptually, an input queue
is maintained for each input port. An actor removes events
from its input queues only when those events are processed
and the generated output events (if any) are delivered to the
input queues of the receiving ports. This assumption does
not affect the applicability of our general execution strategy.
Optimization is possible by employing less input queues, as
is done in an implementation described in the next section.

For an actor α to decide whether it is safe to process event
e at input port i ∈ Iα, it is not enough to have only the
minimum model-time delay from other ports to i. This is
because we also need to consider events received at α’s other
input ports, if any. If events at those other input ports affect
events at the same output port (which could be the state of
the actor), then e and those events must be processed in the
order of their time stamps.

This leads us to extend the notion of dependency by con-
sidering input ports of an actor that affect the same output
port. We define function G : I → 2I to return a complete
group of ports of the same actor that we need to consider
before processing an event at a given port. For any i ∈ Iα,

G(i) =
{
i′ | i′ ∈ Iα ∧ ∃o ∈ Oα.

(
δ0(i, o) <∞∧ δ0(i′, o) <∞

)}
In particular, i itself is a member of G(i) if events at it
affect any output port of α. G(i) = ∅ if and only if ∀o ∈
Oα, δ0(i, o) =∞. In Figure 1, G(i8) = {i8, i9}.

A set Ci ⊆ I is called a dependency cut for input port i ∈ I if
it is a minimal set of input ports that satisfies the following
condition.

For any iy ∈ G(i) and any path ρ to iy satisfying δP (ρ) <
∞, there exist input port ix ∈ Ci and path ρ′ from ix to
iy satisfying δP (ρ′) <∞, such that either ρ is a subpath
of ρ′ or ρ′ is a subpath of ρ.

Intuitively, a dependency cut for i is a “complete” set of
ports on which i depends. Completeness in this case means
that for each port in G(i), all ports it depends on will be
accounted for in Ci, either directly by being included or
indirectly by having either upstream or downstream ports
included.

Again using Figure 1 as an example, the dashed curve de-
picts one possible dependency cut for i8, namely Ci8 =
{i1, i2, i3}.

The dependency cut for a given input port is not unique. For
input port i, G(i) is obviously one of the possible dependency
cuts.

A dependency cut can be used to determine whether it is
safe to process an input event. The strategy is stated as
follows:

Given a dependency cut Ci for input port i of actor α,
an event e at i with time stamp τ is safe to process if for
any ix ∈ Ci and any iy ∈ G(i),

1. ix has received all events with time stamps less than
or equal to τ − δ(ix, iy), and

2. for any iz ∈ I such that δ(ix, iz) <∞,

(a) if iz ∈ G(i), all events in iz’s input queue have
time stamps greater than or equal to τ ,

(b) if iz /∈ G(i), all events in iz’s input queue have
time stamps greater than τ − δ(iz, iy)

Intuitively, these conditions ensure that actor α has received
all events that can possibly invalidate the processing of e.
The first condition ensures that no future events will be
received at the ports in the dependency cut Ci that can
possibly affect an event at the ports in G(i). The second
condition ensures that no event at the ports between any
port in Ci and any port in G(i) can possibly affect an event
at the ports in G(i). (Notice that if δ(iz, iy) =∞, then this
condition is trivially satisfied.) The two conditions together
serve as a guarantee that the ports in G(i) have received all
events with time stamp τ .

This principal, of course, can be satisfied by a classical DE
scheduler, which uses a global event queue to sort events
by time stamp. In this case, the oldest event (with the
least time stamp) can always be processed. This assumes, of
course, that all actors are causal, so events that are produced
in reaction to processing an event always have a time stamp
at least as great as that of the processed event.

However, this principle relaxes the policy considerably, clari-
fying that we only need to know whether an event is “oldest”
among the events that can appear in a dependency cut. We
do not need to know that it is globally oldest. Of course,
the choice of dependency cuts will have a significant effect
on how much this relaxes the scheduling. We discuss that
in the next section.

4. PTIDES IMPLEMENTATION
The general execution policy requires knowing that events
satisfying certain time-stamp conditions have been received.
But it does not specify how this can be known. A classical
DE scheduler used for simulation puts all events in a single
sorted event queue, and hence can easily determine when
these conditions have been satisfied. However, if the execu-
tion is distributed, then a single event queue is not practical.
Separate event queues must be maintained on each execution
platform, and time-stamped events can arrive unpredictably
over the network. If the model includes sensors components
that can produce events at arbitrary times, then a similar
problem occurs. The events on a sorted event queue do not
automatically provide information about what events might
appear later.

In this section, we specialize the general execution policy
to handle these situations. We use the notion of real-time
ports [22], which are ports where time stamps have a particu-
lar defined relationship to real time. These relationships are
discussed intuitively above in section 2, where actors that



wrap sensors, actuators, and network connections have such
real-time ports.

4.1 Real Time Ports
As in section 3.3, we assume that each input port maintains
a queue of as-yet unprocessed events. An input port that is
a real-time port has the constraint that at any real time t,
for each event e in the queue,

t ≤ τ, (1)

where τ is the time stamp of event e. The input ports of
actuator actors and network interface actors (see Figure 4
below) are normally such real-time ports.

This constraint imposes a real-time deadline on delivery of
each event to the queue, because if the event is delivered at a
real time t > τ , then upon delivery, there will be an event in
the event queue that violates the constraint. Moreover, this
constraint imposes a deadline on the processing of the event,
because if the actor is not fired prior to real time t = τ , then
the event will remain on the queue past the point where it
satisfies the constraint.

An output port o that is a real-time port has the constraint
that if it produces an event e with time stamp τ at real time
t, then

τ + do ≥ t ≥ τ (2)

where do ∈ R+ ∪ {∞} is a parameter of the port called
its maximum delay. Here, what we mean by “producing an
event” is delivering it to the input queue of all destination
input ports.

Output ports of sensor and network interface actors are nor-
mally real-time ports. For a sensor, the time stamp of an
output event represents the time at which the reported mea-
surement was taken. The constraint that t ≥ τ specifies
that the sensor can only report about past properties of the
physical environment, not future properties. The constraint
τ + do ≥ t asserts that the sensor does such reporting in
bounded time, if do <∞.

A network interface actor α abstracts a network connection,
and has a single input port i called network input port, a sin-
gle output port o called network output port, both of which
are real-time ports. In this case, do is a bound on net-
work latency. We make a special introduction of this actor
here because this is the only actor that is used for differ-
ent platforms to communicate between each other within a
distributed systems.

Note that for any real-time port p, if there is another port
p′ where δ(p′, p) < ∞, then the real-time constraints on p
imply real-time constraints on p′. Whether those real-time
constraints can be satisfied is the schedulability question [22],
which we do not address in this paper. Our focus instead is
on a scheduling policy that is correct under the assumption
that the model is schedulable.

4.2 Examples
The example in Figure 3 illustrates how we can use the real-
time properties of ports. This model has one sensor and

do
G(i2 )
i1

i2

δdelay

o

Figure 3: Simple DE model with a sensor and an
actuator.

one actuator, as well as a source actor Source, which pro-
duces events with no constraints between model time and
real time. This model has two real-time ports, output port
o of the Sensor actor and input port of the Actuator actor.

Suppose that the source actor has produced an event e with
time stamp τ , and that event is the top event (i.e., the one
with the smallest time stamp) in the queue of the input port
i2 of the Computation actor. When is it safe to process that
event (i.e., to fire the Computation actor)?

Following the general execution policy, we need to first choose
a dependency cut Ci2 . Recall that a simple choice we always
have is Ci2 = G(i2) = {i1, i2}. With this choice, the general
execution policy tells us that we can process the event if i1
has received all events with time stamp less than or equal
to τ . Because of the constraint (2) on o, this is guaranteed
to have happened when real time t is greater than τ + do.

Notice that this scheme allows us to check whether an event
is safe to process by taking advantage of the properties of
the real-time output port of the sensor actor and checking
an event time stamp against the current real time. This mo-
tivates us to develop a cut selection algorithm that chooses
input ports that are connected to real-time output ports
which is the main focus of the next subsection.

If we assume, as usually is the case, that the Sensor actor
delivers events in time-stamp order, then it is also safe to
process e if the top event on i1 has time stamp τ ′ > τ .
Indeed, this latter condition is what Chandy and Misra rely
on. This condition can be used in combination with the
above real-time condition to allow for earlier processing of
some events.

Notice that the real-time execution policy has an important
robustness property. If the Sensor actor fails, and stops pro-
ducing output events at all, then events from Source are pro-
cessed anyway. The Sensor cannot block the Source. This
property is missing from Chandy and Misra’s technique.

If do is large or infinite, then the real-time policy does not
help. In this case, it would be difficult to satisfy the real-time
constraints if there is a bounded model-time delay path from
a sensor actor to any actuator or network interface actor.
This can be checked during static analysis of the model.

Consider next the example in Figure 4. Here, we assume
two distinct computational platforms (enclosing grey boxes)
with a network connection between them. The output ports
of the Sensor and NetworkInterface actors, and the input



Figure 4: Distributed DE model with a sensor on
one platform and an actuator on another.

ports of the NetworkInterface and Actuator actors, are real-
time ports. A Chandy-and-Misra style of execution would
require sending frequent null messages between the two plat-
forms. We will eliminate these null messages while still pre-
serving conservative style of execution.

In this case, the sub-model on platform 2 looks just like the
model in Figure 3 if we treat the NetworkInterface actor
and everything before it as a sensor actor. Similarly, the
sub-model on platform 1 is similar to the one in Figure 3,
but where the NetworkInterface actor and everything after
it is considered analogous to an actuator actor. Thus, each
platform can implement a similar execution policy to the
one we used for Figure 3. Notice that this execution policy
is distributed, in that the platforms need not consult one
another to make scheduling decisions. They only need to
share a notion of real time (with some bounded error that
must be taken into account).

4.3 Dependency Cut Selection
Motivated by the above examples, we provide an algorithm
for choosing a suitable dependency cut Ci for a given input
port i. The goal of this algorithm is to find a dependency
cut that consists of ports that relate model time to real time,
in order to completely eliminate the need for null messages
across computing platforms. As defined in the previous sec-
tion, real-time ports have exactly this property, thus all real-
time input ports and inputs connected to real-time output
ports are candidates for the dependency cut. Another can-
didate for the dependency cut would be an input port of a
source actor as introduced in section 3.1. The cut is formed
by first including these candidates into the cut and then
ensuring the cut is minimal.

Figure 5 shows an example of the cut Cin of port in for
each n ∈ {1, 2, 3} (notice that the cuts for all ports in G(in)
are identical). Ports i′1, i

′
4 and i′5 are candidates because

they are either real-time input ports or inputs connected
to real-time output ports, while i′2 and i′3 are candidates
because they represent input ports of source actors. Now to
ensure the cut is minimal, we see that both i′4 and i′5 could
be reached by traversing the graph from i′3, thus they are
removed from the cut. Thus we have Cin = {i′1, i′2, i′3} for
each n ∈ {1, 2, 3}.

Using the above example as motivation, we formally de-

Figure 5: Distributed DE model with a sensor on
one platform and an actuator on another.

scribe the cut selection procedure using standard graph no-
tation and algorithms. Let us define a directed graph G =
(V,E,W,L) that describes the PTIDES model being exam-
ined, where

V = P,

E = {(v1, v2) | ∀v1, v2 ∈ V. δ0(v1, v2) <∞
∧ v1is not a network input port

∧ v2is not a network output port},
W (v1, v2) = δ0(v1, v2), and

L(v) =


1 if ((v′, v) ∈ E ∧ v′ is real-time output port)
∨ v is a real-time input port
∨ v is a source input port,

0 otherwise.

Here, V is the set of ports of the model; E is the set of edges;
W : E → R+ ∪ {∞} is a weight function that maps each
edge to its minimal model time delay; L : V → {0, 1} is a la-
beling function that determines whether each vertex v ∈ V
is a candidate for dependency cut. This graph constructs
the original model, while disconnecting the edges from net-
work input ports or towards network output ports. Since
using network interface actors is the only way data could
be communicated across platforms, this in effect severs all
connections across computation platforms. This ensures the
cut always consists of the ports from the same platform as
port group G(i).

We determine a dependency cut Ci for port i in a two-step
algorithm as follows:

1. for each v ∈ V such that L(v) = 1, start from v
and traverse G. If the traversal leads to a vertex
i′ ∈ G(i), add v to Ci.

2. After step 1 is completed, start from each v ∈ Ci
and traverse G. If during this process a vertex v′ is
reached such that v′ ∈ Ci, update Ci by removing
v′ from the cut.

Notice that step 1 of our algorithm ensures the cut is com-
plete. Step 2 of our algorithm guarantees the cut is minimal,
since the traversal ensures any two vertices belonging to a
path will not be part of the cut at the same time. Also,
in the case where we have more than one candidate for the
cut within a cycle, the above algorithm is not deterministic
in specifying which one among them will become a member



of the cut. However, we do not care which port is cho-
sen through step 2 of the algorithm, as long as exactly one
among them is chosen, and step 2 ensures exactly that.

Also notice that if our only goal of the cut selection algo-
rithm is to find the dependency cut, then any graph traversal
algorithm could be used in step 1. However, during traver-
sal, it is also beneficial for us to obtain the value of minimum
model time delay δ from each member of the cut to each el-
ement of G(i). This value could be obtained by using a
shortest path algorithm as a graph traversal algorithm.

4.4 Safe-to-Process Analysis
Using the dependency cut obtained by the algorithm in sub-
section 4.3, in this subsection we present an instance of the
general execution strategy described in section 3.3, i.e., we
present conditions for safe processing of events that obeys
the DE semantics.

We first define the real-time delay function D : I → R+ ∪
{−∞} that maps each port p ∈ I to

D(p) =


0 if p is a real-time input port (1),
do if p is a non-real-time input port

connected to a real-time output port (2),
−∞ otherwise (3).

Recall that do is the real-time delay specific to a real-time
output port, as defined in equation (2) of section 4.1 (i.e.,
τ + do ≥ t). Note also that equation (1) in the same section
can be rewritten as τ + 0 ≥ t. Thus, for each input port
p that satisfies condition (1) or (2) of the definition D(p)
given above we have that an event with time stamp τ is
delivered to the input queue of p at real time t such that
τ + D(p) ≥ t. For all other ports, i.e., for case (3) above,
D(p) = −∞ because no such constraint between real time
and model time exists.

Assume that model-time delay function δ and real-time de-
lay function D are given and that for each input port i ∈ I
dependency cut Ci is determined according to the algorithm
from section 4.3. In that case, a procedure for determining
safe-to-process events based on the general execution strat-
egy presented in section 3.3 can be given as follows:

An event at input port i ∈ I with time stamp τ is safe to
process when:

1. (a) real time has exceeded

τ + max
p∈Ci,i′∈G(i)

{D(p)− δ(p, i′)},

and

(b) at each source actor input port p ∈ Ci an event
has been received with time stamp greater than

τ + max
i′∈G(i)

(−δ(p, i′)),

and

2. for each port p′ ∈ I such that there exists port p ∈ Ci
with δ(p, p′) <∞, each event in input queue of p′ has
time stamp

(a) greater than or equal to τ for p′ ∈ G(i),

(b) greater than
τ + maxi′∈G(i)(−δ(p′, i′)) for p′ /∈ G(i).

The conditions 1 and 2 correspond to the conditions 1 and 2
of the general execution strategy respectively. The forms of
the corresponding conditions 2 are similar. However, condi-
tions 1 differ because the intention here is to take advantage
of the particular dependency cut Ci. If D(p) > −∞ for an
input port p ∈ I, then constraint τ +D(p) ≥ t between real
time and model time can be exploited as explained above.
In addition, condition 1(a) takes into account all ports of Ci
and G(i) and model-time delay δ between those. Thus, after
the specified real time the event can be safely processed be-
cause no event with an earlier time stamp can arrive at the
ports in the group G(i). Note that for each i ∈ I, given Ci
and G(i), the value of maxp∈Ci,i′∈G(i){D(p) − δ(p, i′)} can
be computed at compile time.

The condition 1(b) addresses the condition 1 of the general
execution strategy for ports p ∈ Ci for which D(p) = −∞,
i.e., for input ports of source actors on the dependency cut.
Namely, the model of a source actor presented in section 3.1
guarantees that the events in the queue of its input port are
delivered in time stamp order. Thus, if condition 1(b) is
satisfied for such a port p then all events with time stamps
less than or equal to τ + maxi′∈G(i)(−δ(p, i′)) have been
received at p, i.e., the condition 1 of the general execution
strategy is satisfied. Note that we do not assume that events
at other input ports are received in time stamp order. If that
is the case, the execution strategy could be made simpler.
In particular, if this is true for all ports of dependency cut
Ci the condition 1(a) could be relaxed similar to condition
1(b) to form a less conservative strategy.

4.5 Simulation of PTIDES Models
We developed a simulation environment for the PTIDES
programming model as an experimental domain in Ptolemy
II [2]. The Ptolemy framework is a Java-based environ-
ment for modeling and simulation of heterogeneous concur-
rent systems. Ptolemy supports an actor-oriented design
methodology. A special actor in a Ptolemy model, the di-
rector, manages the interaction of other actors thus repre-
senting the model of computation. The implementation of
a model of computation in Ptolemy is called a domain.

Figure 6 shows an example of a PTIDES model in Ptolemy.
A PTIDES model consists of platforms represented by com-
posite actors on the top-level of the model. These platforms
are supposed to execute in parallel and communicate via
events. Inside each platform, the set of actors include sen-
sors, actuators, source actors, delay actors or other computa-
tion actors. The worst case execution time can be associated
with an actor.

To keep track of the execution of actors, the PTIDES domain
maintains a notion of physical time. The physical time is
not the real time but a new model time that simulates real
time and is manipulated by the framework. The physical
time is different from the model time used in discrete event
simulation which defines the execution semantics. During



simulation, the physical time is used to determine whether
an event is safe to process.

Figure 6: A PTIDES model in Ptolemy.

The interaction of platforms on the top-level is managed
by the PtidesDirector and the interaction of actors inside a
single platform is directed by the PtidesEmbeddedDirector.
The sequence diagram in Figure 7 describes the main steps
during the simulation of a PTIDES model. Before starting
the simulation, the PtidesDirector creates a new thread for
every platform. During the simulation, the threads execute
in parallel.

The dependency cut and execution strategy we use for sim-
ulation of PTIDES models are those presented in sections
4.3 and 4.4 respectively. At each simulation step a set of
events that are safe to process is determined. These events
are taken from the event queues associated with input ports
of actors inside a platform. The PtidesEmbeddedDirector
director of a platform does not use a single platform-level
event queue. Note that the execution strategy does not nec-
essarily select for processing the event with the least time
stamp. Note also that an event might be safe to process
according to PTIDES model even though it is not possible
to process it on the platform at the current physical time.
An example is an event that is safe to process but another
actor is still in execution and cannot be preempted. If at the
current physical time there are no safe to process events the
platform requests the PtidesDirector to resume execution of
that platform at a future instance of physical time and the
platform thread waits. When all threads are waiting, the
PtidesDirector increases physical time and notifies all plat-
forms. The platforms then continue processing events.

4.6 A Simple PTIDES Implementation
In this section we briefly discuss a modification of the strat-
egy presented in section 4.4 that can result in implemen-
tations with relatively simple checks. In this approach an
event queue is available within each platform to store and
sort all events within the platform. Also, in contrast to the
strategy from section 4.4 or 4.5, only the event with the least

PtidesDirector

PlatformThreadcreate()

CompositeActor

fire

PtidesEmbeddedDirector

fire

wait for future physical time

fire actors as 

long as there 

are events 

to be executed 

at current 

physical time

wait until all 

threads

are waiting

for a future 

physical time

increase physical time

notify all waiting threads

initialize

fire

start

Figure 7: Simulation of a PTIDES model in
Ptolemy.

time stamp in the queue is checked whether it is safe to pro-
cess. The advantage in this scheme is that we only have to
deal with one event at a time and the event queue allows us
to compare time stamps implicitly, thus greatly simplifies
the execution strategy. In particular, if only the top event
of the queue is considered for processing, there is no need
to check the condition 2 of the general execution strategy
from section 3.3 because it will always be satisfied. How-
ever, since an event in the queue with a larger time stamp
may be safe to process even when the top event is not, this
approach may result in more conservative strategy. This de-
pends both on the underlying graph and the characteristics
of the input event sequences.

Note that the condition 1(b) of the strategy in section 4.4 is
needed because no relationship between real time and model
time is available for all ports of the dependency cut. Thus,
checking time stamp against real time is not applicable in
general. However, this lack of information also implies that
the source actors can produce a large number of events and
potentially overflow the event queue. We can throttle the
execution of a source actor by simply putting a fixed sized
buffer at the output of each source actor. If no events are
currently safe to process, the source actor can keep produc-
ing events until the buffer is full. If the buffer is full, the
firing of the source actor is blocked. Aside from the max-
imum buffer limit, we also need a way to ensure at least
one event is at the output of a source actor at any time.
Take Figure 3 for instance, the event queue will be used to
compare time stamps of events at each port of G(i1), and
as long as one event is present at port i2, we will always be
able to process events in time stamp order without the need
to check condition 1(b). When the number of events in the
buffer becomes zero we would fire the source actor exactly
once in order to ensure one event is always available.

Thus, in this implementation our safe-to-process analysis
can be simplified to a time stamp checking against real-time
as follows:



An event at input port i ∈ I with time stamp τ is safe to
process when the real time has exceeded

τ + max
p∈Ci,i′∈G(i)

(D(p)− δ(p, i′)).

If an event can be processed immediately, it is passed to the
corresponding actor for processing. If no event can be pro-
cessed immediately, the real time at which an event can be
processed can be determined, and a timed interrupt can be
set to occur at that time. Our preliminary implementation of
this scheme runs on a set of Linux-based Agilent demo boxes
equipped with FPGAs that perform time synchronization
according to the IEEE 1588 Precision Time Protocol over
the local Ethernet network.

5. SUMMARY
We first presented a general execution strategy that enables
correct event processing for timed models with discrete-event
semantics. The strategy allows independent events to be
processed out of time stamp order. For our PTIDES pro-
gramming model we established relationships between model
time and real time for certain actors. Motivated by open
and precise clock synchronization protocols that are becom-
ing available for distributed real-time systems, we next pre-
sented an instance of the general execution strategy that
makes use of these relationships, clock synchronization and
static model analysis for aggressive processing of events. In
the presented approach null messages are not needed to syn-
chronize the computing platforms. Beside working further
on PTIDES implementation and simulation tools our future
work will include scheduling mechanisms for events that are
safe to process and the related schedulability problems.
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